

Airandé

Efficacy Data for Airandé Disinfection System in Healthcare-related Settings

July 2019

Dr Belinda Chapman, PhD, BSc (Hons), Grad. Dip. Science Management Principal Scientific Adviser, Airandé

Scope of data

- Target applications: hospital rooms and surfaces found in hospital rooms and public spaces in hospitals
- Target organisms: bacterial vegetative cells, bacterial sporeformers, yeasts and moulds
- Studies: challenge studies and field studies

Airandé

H₂O₂ Efficacy Data

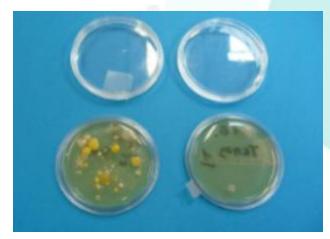
Challenge study 1: inactivation of various bacteria by liquid H₂O₂

- Disinfection technology: liquid H₂O₂, 3% concentration
- Study details: five different surface types (wood, glass, laminate, stainless steel, vinyl) artificially contaminated with four different types of microbes (Escherichia coli, Candida albicans, Pseudomonas aeruginosa and Staphylococcus aureus, exposed to disinfection and samples collected by swabbing for plating

Sample	Surfaces	Inoculum count (cfu / mL)	Count after disinfection	Log reduction
E. coli	all	3x10 ⁸	<10	~7
C. albicans	all	3x10 ⁸	<10	~7
P. aeruginosa	all	3x10 ⁸	<10	>7
S. aureus	all	3x10 ⁸	<10	~7

Field study 1: microbial burden reduction on various surfaces room using liquid H₂O₂

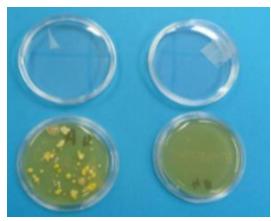
- Disinfection technology: liquid H₂O₂, 3% concentration with 1 minute contact time
- Study details: samples obtained by contact plating, before and after disinfection, from customer desk, automatic cash machine, information desk and sink in ladies' bathroom



Field study 1: microbial burden reduction on various surfaces using liquid H₂O₂

Customer desk	Count (cfu / mL)	Log reduction
Before (T0)	~10²	N/A
After liquid (T1)	10	~1

Cash machine	Count (cfu / mL)	Log reduction
Before (T0)	~10 ³	N/A
After liquid (T1)	<10	>2



Field study 1: microbial burden reduction on various surfaces using liquid H₂O₂

Information desk	Count (cfu / mL)	Log reduction
Before (T0)	~10²	N/A
After liquid (T1)	20	~1

Bathroom sink	Count (cfu / mL)	Log reduction	
Before (T0)	~102	N/A	
After liquid (T1)	<10	>1	

Challenge study 2: inactivation of Clostridium difficile by vapourised H₂O₂

- Disinfection technology: vapourised H₂O₂, 7% concentration, 50m³ programmed volume
- Study details: petri dishes pre-prepared with spores of *Clostridium difficile* and placed at 3 locations in a hospital room, exposed to disinfection program and closed 1 h after program completion
- Results:

Sample	Location	Count (cfu / mL)	Log reduction
Control	Un-exposed	4x10 ⁷	N/A
Location A	3 m away & 40 cm above	1.5x10 ³	~4
Location B	4 m away at ground level	<10	>6
Location C	80 cm above to side	4.5x102	~5

Field study 2: reduction of microbial burden in hospital room using vapourised H₂O₂

- Disinfection technology: vapourised H₂O₂, 7% concentration, 35m³ (6 mL/m³⁾ programmed volume
- Study details: exposure plates collected before and after disinfection from bathroom sink
- Results:

Sample	Count (cfu / mL)	Log reduction
Before	~103	N/A
After	<10	~2

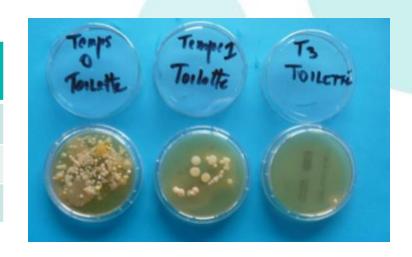
Field study 3: microbial burden reduction in hospital room using liquid and vapourised H₂O₂

- Disinfection technology: liquid H₂O₂, 3% concentration with 10 second contact time, followed by vapourised H₂O₂, 7% concentration, 35m³ (6 mL/m³⁾ programmed volume
- Study details: samples obtained by contact plating, before and after each stage of disinfection, from night stand, chair and toilet

Field study 3: microbial burden reduction in hospital room using liquid and vapourised H₂O₂

· Results:

Night stand	Count (cfu / mL)	Log reduction
Before (T0)	~10 ³	N/A
After liquid (T1)	50	~2
After vapour (T3)	<10	~3


Chair	Count (cfu / mL)	Log reduction
Before (T0)	5 x 10 ²	N/A
After liquid (T1)	2×10^2	<1
After vapour (T3)	<10	~2

Field study 3: microbial burden reduction in hospital room using liquid and vapourised H₂O₂

Results (continued):

Toilet	Count (cfu / mL)	Log reduction
Before (T0)	~1 x 10 ⁴	N/A
After liquid (T1)	2 x 10 ²	~2
After vapour (T3)	<10	~3

Challenge study 3: MRSA and VRE in hospital room using vapourised H₂O₂

- Disinfection technology: vapourised H₂O₂, 6% concentration in 80m³ hospital room for 18 minutes
- Study details: 22 room surfaces (including bed, bedside rail, blood pressure cuff, intravenous pump, call button, dresser, door handle, toilet, toilet rail, curtain rail) artificially contaminated with methicillin resistant Staphylococcus aureus and vancomycin resistant enterococci, then routine cleaning and sanitising applied, followed by vapourised H₂O₂ disinfection, with swabs taken for plating
- Results:

Sample	No. detections MRSA (/22 surfaces)	No. detections VRE (/22 surfaces)
Before cleaning	22	22
After cleaning	9	13
After disinfection	7	4

An evaluation of nebulised hydrogen peroxide post routine cleaning for environmental surface disinfection

J. Kok*, L. Thomas, J. Tallon, K. Dempsey, G. Gilbert (Westmead, AU)

Field study 4: Microbial burden in hospital ward using vapourised H₂O₂

- Disinfection technology: vapourised H₂O₂, 6% concentration in 80m³ hospital room for 18 minutes
- Study details: 300-bed teaching hospital with one- and two-bedded rooms with en suite, manually cleaned as usual before disinfection applied, contact plates (toilet flush button, bedside table, handset, IMED pump, keyboard, ECG contact leads) 4 rooms x 4 surfaces x 3 time points (patient discharge, after cleaning, after disinfection)

Available online at www.sciencedirect.com

Journal of Hospital Infection

journal homepage: www.elsevierhealth.com/journals/jhin

Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital

H.-T. Chan, P. White, H. Sheorey, J. Cocks, M.-J. Waters*

Departments of Microbiology and Infection Control, St Vincent's Hospital, Melbourne, Australia

Field study 4: Microbial burden in hospital ward using vapourised H₂O₂

· Results:

Area (no. sampled)	Post patient discharge (average cfu/plate)	Post cleaning (average cfu/plate)	Post H ₂ 0 ₂ (average cfu/plate)
Call bell (3)	33	28	2
Cotside (4)	84	25	3
Bedside table (3)	19	276	<1
Toilet button (3)	80	45	1
IMED pump (2)	26	41	8
ECG leads ICU (1)	793	531	3
Keyboard ICU (1)	22	11	0

- Disinfection technology: vapourised H₂O₂, 6% concentration
- Study details: 5 surfaces commonly encountered in the hospital environment (stainless steel, vinyl, Laminex®, Tarkett®, glass) artificially contaminated with vancomycin resistant enterococci, and placed on a table in a patient room for vapourised H₂O₂ disinfection, then remaining viable organisms recovered by contact plating

Available online at www.sciencedirect.com

Journal of Hospital Infection

journal homepage: www.elsevierhealth.com/journals/jhin

Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital

H.-T. Chan, P. White, H. Sheorey, J. Cocks, M.-J. Waters*

Departments of Microbiology and Infection Control, St Vincent's Hospital, Melbourne, Australia

· Results:

Surface	Untreated (cfu)	H ₂ O ₂ (cfu)
Steel 1	>1150	0
Steel 2	>531	50
Steel 3	>1214	0
Steel 4	>617	1
Steel 5	>504	7
Steel 6	>2028	16

Surface	Untreated (cfu)	H ₂ O ₂ (cfu)
Laminex® 1	>448	22
Laminex® 2	>1323	236
Laminex® 3	>1505	19
Laminex® 4	>799	0
Laminex® 5	>1124	24
Laminex® 6	>1700	111

Surface	Untreated (cfu)	H ₂ O ₂ (cfu)
Glass 1	220	0
Glass 1	183	1
Glass 1	>561	2
Glass 1	>219	6
Glass 1	24	0
Glass 1	>1600	108

Surface	Untreated (cfu)	H ₂ O ₂ (cfu)
Tarkett® 1	>644	63
Tarkett® 2	271	78
Tarkett® 3	>909	46
Tarkett® 4	>378	72
Tarkett® 5	>333	43
Tarkett® 6	>1600	63

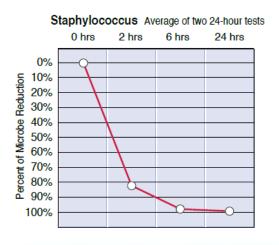
Surface	Untreated (cfu)	H ₂ O ₂ (cfu)
Vinyl 1	>1073	190
Vinyl 2	>680	13
Vinyl 3	>1293	110
Vinyl 4	>833	88
Vinyl 5	>571	67
Vinyl 6	>1180	156

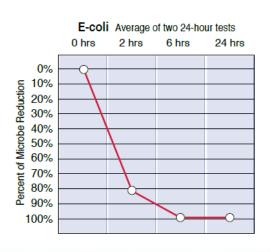
Airandé

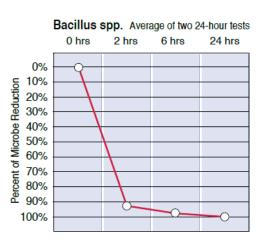
Photocatalytic Efficacy Data

Field study 5: reduction of microbial burden in surgical theatre by photocatalysis

- Disinfection technology: photocatalysis
- Study details: surgical theatre, baseline bacterial and fungal cultures collected, and isolates identified using classical methods
- Results: 24 hours after installation and use of the photocatalytic reactor up to a 300% reduction of airborne microbes was achieved

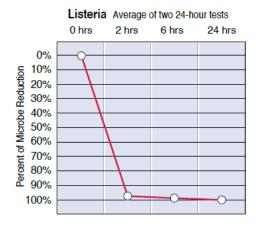

PEER-REVIEW PAPER

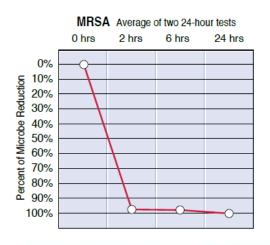

Reducing Airborne Microbes in the Surgical Operating Theater and Other Clinical Settings A Study Utilizing a Unique Photocatalytic Reactor Biocide Unit

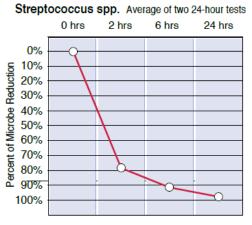

Nicholas Cram, MEng, CBET, CHSP, Nolan Shipman, MD, and John M. Quarles, PhD
From the Biomedical Engineering Department, Texas A&M University, College Station, Shipman-Cram
Medical Research, College Station (Mr Cram); The Physicians Centre, Bryan, Shipman-Cram Medical
Research, Bryan, Tex (Dr Shipman); and Department of Medical Microbiology and Immunology,
College of Medicine, Texas A&M University, College Station (Dr Quarles).

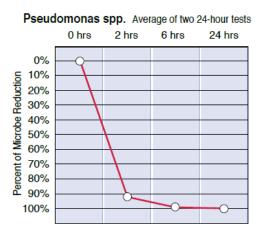
Challenge study 5: photocatalytic decontamination of various microbes

- Disinfection technology: photocatalysis
- Study details: decontamination of surfaces individually artificially contaminated with 7 different types of bacteria (Escherichia coli, Staphylococcus, Bacillus, methicillin resistant Staphylococcus aureus, Streptococcus, Pseudomonas, Listeria) and 2 different fungi (Candida albicans and Stachybotrys) over 24 hours

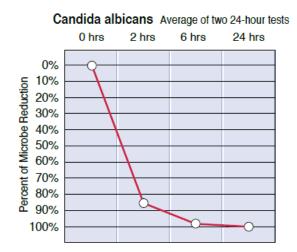


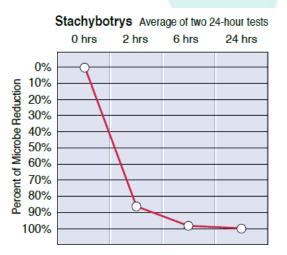





Challenge study 5: photocatalytic decontamination of various microbes

Results (continued):





Challenge study 5: photocatalytic decontamination of various microbes

Results (continued):

